Sabtu, 08 Oktober 2011

aves

Aves merupakan kelas tersendiri dalam kingdom animalia, aves atau burung memiliki ciri umum yaitu berbulu dan kebanyakan diantara mereka bisa terbang. Kelas aves adalah satu-satunya kelompok hewan yang memiliki bulu, (jangan salah mamalia berambut, bukan berbulu). Hal ini merupakan keunikan tersendiri dari kelompok hewan tersebut. Berikut adalah uraian singkat tentang kelas aves,
Ciri Morfologi Aves
a) Struktur Bulu
Bulu adalah ciri khas kelas aves yang tidak dimiliki oleh vertebrata lain. Hampir seluruh tubuh aves ditutupi oleh bulu, yang secara filogenetik berasal dari epidermal tubuh, yang pada reptile serupa dengan sisik. Secara embriologis bulu aves bermula dari papil dermal yang selanjutnya mencuat menutupi epidermis. Dasar bulu itu melekuk ke dalam pada tepinya sehingga terbentuk folikulus yang merupakan lubang bulu pada kulit. Selaput epidermis sebelah luar dari kuncup bulu menanduk dan membentuk bungkus yang halus, sedang epidermis membentuk lapisan penyusun rusuk bulu.Sentral kuncup bulu mempunyai bagian epidermis yang lunak dan mengandung pembuluh darah sebagai pembawa zat-zat makanan dan proses pengeringan pada perkembangan selanjutnya (Jasin, 1984).
Berdasarkan susunan anatomis bulu dibagi menjadi:
  • Filoplumae, Bulu-bulu kecil mirip rambut tersebar di seluruh tubuh. Ujungnya bercabang-cabang pendek dan halus. Jika diamati dengan seksama akan tampak terdiri dari shaft yang ramping dan beberapa barbulae di puncak.
  • Plumulae, Berbentuk berbentuk hampir sama dengan filoplumae dengan perbedaan detail.
  • Plumae, Bulu yang sempurna.
  • Barbae
  • Barbulae, Ujung dan sisi bawah tiap barbulae memiliki filamen kecil disebut barbicels yang berfungsi membantu menahan barbula yang saling bersambungan.
Susunan plumae terdiri dari :
· Shaft (tangkai), yaitu poros utama bulu.
· Calamus, yaitu tangkai pangkal bulu.
· Rachis, yaitu lanjutan calamus yang merupakan sumbu bulu yang tidak berongga di dalamnya. Rachis dipenuhi sumsum dan memiliki jaringan.
· Vexillum, yaitu bendera yang tersusun atas barbae yang merupakan cabang-cabang lateral dari rachis.
Gambar Struktur Bulu Burung
(sumber: Harunyahya.com)
Lubang pada pangkal calamus disebut umbilicus inferior, sedangkan lubang pada ujung calamus disebut umbilicus superior. Bulu burung pada saat menetas disebut neossoptile, sedangkan setelah dewasa disebut teleoptile.
Menurut letaknya, bulu aves dibedakan menjadi:
  • Tectrices, bulu yang menutupi badan.
  • Rectrices, bulu yang berada pada pangkal ekor, vexilumnya simetris dan berfungsi sebagai kemudi.
  • Remiges, bulu pada sayap yang dibagi lagi menjadi:
  • remiges primarie yang melekatnya secara digital pada digiti dan secara metacarpal pada metacarpalia.
  • Remiges secundarien yang melekatnya secara cubital pada radial ulna.
  • Remiges tertier yang terletak paling dalam nampak sebagai kelanjutan sekunder daerah siku.
  • Parapterum, bulu yang menutupi daerah bahu.
  • Ala spuria, bulu kecil yang menempel pada ibu jari (Jasin, 1984).
Pada burung heron terdapat bentukan bulu yang khusus yang disebut sebagai bulu powder/ bulu bubuk. Bulu ini hampir sama dengan bulu pada umumnya tetapi barbulaenya terpisah menjadi bubuk halus seperti bedak. Fungsi bulu ini belum jelas, tetapi pada saat burung melumasi bulu dengan cara menjilatinya, bulu bubuk membantu mengisolasi panas tubuh dan membantu menghangatkan telur saat pengeraman.
Burung Hantu
Semi plumae adalah kumpulan bulu barbula yang letaknya tersembunyi di bawah bulu-bulu luar. Bistle adalah bulu perasa berupa shaft yang memanjang melebihi bulu luar, ditemukan pada kepala burung Caprimulgids dan burung penangkap serangga flycatchers (Sukiya, 2003). Bristle yang menutupi lubang hidung terdapat pada burung pelatuk. Hal ini merupakan bentuk adaptasi burung pelatuk agar partikel-partikel kayu tidak masuk saluran pernafasan. Bristle pada burung hantu dan caprimulgids membantu mendeteksi posisi sarang, tempat bertengger dan benda yang menghalangi. Fungsi bristle didukung oleh adanya getaran dan tekanan reseptor didekat folikel bulu (Sukiya, 2003).
Bentuk bulu ekor burung pada saat tidak terbang bermacam-macam, antara lain berbentuk persegi, bertakik, bercabang, bulu sebelah luar memanjang, bulu ekor dengan raket, bulu tengah panjang, bundar, berbentuk cakram, berbentuk tingkatan, dan berujung runcing (Sukiya, 2003).
Ekor bentuk persegi (sumber: http://en.wikipedia.org)
Bentuk ekor bulat (sumber: Foto KKL KBS)
Bentuk ekor bulu sebelah luar memanjang (sumber: Foto KKL KBS)
b) Warna Bulu
Warna bulu dihasilkan oleh butir pigmen, dengan difraksi dan refleksi cahaya oleh struktur bulu atau oleh pigmen dan struktur bulu. Pigmen pokok yang menimbulkan warna pada bulu adalah melanin dan karotenoid. Karotenoid sering disebut dengan lipokrom yang tidak larut dalam air tetapi larut dalam metanol, eter atau karbon disulfida. Karotenoid terbagi menjadi 2, yaitu zooeritrin (animal red) dan zoosantin (animal yellow). Pigmen melanin terklarut dalam asam. Butir-butir eumelanin beraneka macam yaitu dari hitam sampai coklat gelap. Feomelanin yaitu hampir tanpa warna hingga coklat kemerahan.
Burung merak (sumber: www.harunyahya.com)
Burung Bayan (sumber Foto KKL KBS)  
Butir-butir melanin bulat di dekat ujung bulu luar memberikan efek ring Newton dan menyebabkan perubahan warna-warni bulu. Warna hijau, biru dan violet tidak dihasilkan oleh pigmen tetapi tergantung dari struktur bulu. Contohnya burung bluebird yang bulunya berwarna biru tetapi tidak mengandung pigmen warna biru. Warna ini ditimbulkan oleh pigmen kuning yang menyerap semua spektrum sinar kemudian dipantulkan kembali. Burung tropis pemakan pisang memiliki pigmen tembaga berupa turacoverdin yang mampu menghasilkan warna merah gelap dihasilkan oleh turacin (Sukiya 2003). Salah satu spesies burung pemakan pisang ini adalah Tauraco corythaix, mempunyai kuning telur berwarna merah terang yang ditimbulkan oleh karotenoid dan 60% dari pigmen merah yang disebut astasantin.
Meski warna bulu burung adalah genetis, namun dapat berubah akibat faktor internal maupun eksternal. Burung yang dikurung dalam waktu lama juga dapat berubah warna bulunya. Hal ini dapat disebabkan karena makanannya. Faktor internal yang mempengaruhi warna bulu adalah hormon. Spesies burung terdapat dimorfisme warna dalam seksual. Pengaturan hormon estrogen banyak berperan pada burung jantan, yaitu sebelum hingga awal pergantian bulu. Sedangkan pada burung betina kemungkinan diinduksi oleh bulu burung jantan dengan pengaturan testosteron.
Faktor eksternal yang dapat mempengaruhi perubahan warna adalah oksidasi dan gesekan/abrasi. Warna yang ditimbulkan karoten dapat memudar karena sinar matahari.

proses perubahan glukosa

PROSES GLIKOLISIS
Glikolisis merupakan jalur, dimana pemecahan D-glukosa yang dioksidasi menjadi piruvat yang kemudian dapat direduksi menjadi laktat. Jalur ini terkait dengan metabolisme glikogen lewat D-glukosa 6-fosfat. Glikolisis bersangkutan dengan hal-hal berikut :
1. Pembentukan ATP dalam rangkaian ini molekul glukosa dioksidasi sebagian.
2. Produksi piruvat

3. Pembentukan senyawa antara bagi proses-proses biokimiawi lain misalnya, gliserol 3-fosfat. Untuk biosintesis trigliserid dan fosfolipid, 2, 3–bisfosfogliserat dalam eritrosit, piruvat untuk biosintesis L–alanin, dan sebagainya.
Glikolisis dapat berlangsung dalam keadaan aerob, bila sediaan oksigen cukup untuk mempertahankan kadar NAD+ yang diperlukan, atau dalam keadaan anaerob (hipoksik), bila kadar NAD+ tidak dapat dipertahankan lewat sistem sitokrom mitokondrial dan bergantung pada usaha temporer perubahan piruvat menjadi laktat. Glikolisis anaerob, yang menaruh kepercayaan temporer pada piruvat merupakan usaha tubuh dalam menantikan pulihnya kecukupan oksigen. Dengan demikian glikolisis merupakan keadaan ini disebut hutang oksigen.
Pemeliharaan kadar oksigen dan karbondioksida tertentu dalam sel essensial untuk fungsi normalnya. Tetapi situasi abnormal dapat terjadi, bila tubuh menderita stres. Stres demikian mungkin berupa keperluan energi tinggi misalnya, labihan ekstrim atau hiperventilasi esenfalitis, apabila laju pengangkutan oksigen kedalam sel tidak sama kecepatannya dengan reaksi katabolik oksidatif penghasil ATP. Karena reaksi-reaksi oksidatif ini dikaitkan dengan oksigen lewat NAD+ / NADH dan sistem sitokrom, dan karena hal-hal tersebut tidak dapat berlangsung kecuali NADH + H + diubah menjadi NAD+, diperlukan langkah darurat yang melibatkan piruvat. Hal ini mengakibatkan konversi piruvat menjadi laktat. Bila kadar laktat dalam darah meningkat, pH menurun, dan timbul tanda-tanda yang diperkirakan, yakni pernafasan cepat dan kehabisan energi. Variasi kadar laktat darah yang mengikuti perubahan-perubahan dalam aktivitas jasmani. Laktat yang diproduksi dan dilepaskan kedalam darah diubah kembali menjadi piruvat dalam hati apabila diperoleh cukup oksigen.
Regenerasi NAD+ oleh piruvat.
Enzim yang mengkatalis reaksi dalam tahapan glikolisis dijumpai dalam sitoplasma sel. Disinilah glikolisis berlangsung. Glikolisis dimulai dengan fosforilasi glukosa menjadi glukosa 6–fosfat.
Gugus fosforil pada glukosa 6 fosfat berasal dari ATP. Nampaknya agak mengherankan karena glikolisis merupakan lintasan katabolisme, kita mengharapkan memperoleh ATP, bukan menggunakannya. Glukosa 6–fosfat diubah menjadi fruktosa 6–fosfat :
Fruktosa 6–fosfat mengalami fosfosilasi menjadi fruktosa 1, 6–difosfat dengan menggunakan satu molekul ATP lagi yang diinvestasikan.
Setelah sel telah mengintenvestasikan dua molekul ATP untuk setiap molekul glukosa yang dirombak. Perubahan fruktosa 6–fosfat menjadi fruktosa 1, 6–difosfat telah terbentuk, senyawa ini harus terus mengalami lintasan glikolisis. Jadi, kita dikatakan bahwa fosforilasi fruktosa 6–fosfat menjadi 1,6–difosfat adalah tahap wajib dari glikolisis.
Fruktosa 1,6–difosfat sekarang terpecah menjadi, memberikan sepasang senyawa berkorban 3, yaitu dihidroksiaseton fosfat dan gliserol dehida 3–fosfat. Hanya gliseraldehid 3–fosfat yang akan digunakan dalam tahap lanjutan glikolisis. Tetapi, dihidroksiaseton bukanlah limbah. Alam bersifat hemat dan sel mempunyai enzim yang mengubah dihidroksiaseton fosfat menjadi gliseraldehida 3–fosfat. Karena satu molekul glukosa telah menyediakan dua molekul gliseraldehida 3–fosfat, kita harus mengingatnya untuk membuat perhitungan keseluruhan.
Enzim kemudian mengubah gliseraldehida 3–fosfat menjadi 1,3–difosfogliserat dalam reaksi oksidasi penghasil energi yang pertama dalam katabolisme glukosa. Enzim menggunakan NAD+ sebagai koenzim. NAD+ direduksi menjadi NADH dengan menerima dua elektron dan satu proton dari substrat aldehida selama reaksi berlangsung. Gugus fosfosil yang baru pada produk organik berasal dari ion. Fosfat anorganik yang ada dalam sitoplasma, sehingga tak ada ATP yang dipakai disini. Kenyataannya, 1,3–difosfogliserat sendiri adalah senyawa kaya energi, yaitu anhidrida campuran dari asam karboksilat dan asam fosfat yang dapat mengalihkan gugus fosforilnya kepada ADP. Pengalihan ini berlangsung pada tahap sesudah glikolisis.

Karena sel menginvestasikan dua molekul ATP dan sekarang mendapatkan dua, ini baru mencapai titik impas. Dari titik ini, setiap ATP yang dihasilkan merupakan keuntungan. Tahap berikutnya dalam glikoliis adalah pengalihan gugus fosforil pada 3–Fosfogliserat :
Produk reaksi ini, yaitu 2–Fosfogliserat melepaskan molekul air untuk menghasilkan fosfoenolpiruvat.
Fosfoenolpiruvat adalah molekul fosfat yang kaya energi, yang mampu memberikan gugus fosforilnya kepada ADP.
Karena perombakan satu molekul glukosa akhirnya menghasilkan dua molekul fosfoenolpiruvat, maka dua molekul ADP dapat difosforilasi menjadi ATP jika fosfoenolpiruvat dari satu molekul glukosa diubah menjadi piruvat. Kedua molekul ATP ini adalah keuntungan yang diperoleh dalam glikolisis.
Pembentukan piruvat mengakhiri proses glikolisis aerob. Berikut ini adalah pokok yang terjadi dalam oksidasi satu molekul glukosa :
1. Terbentuk dua molekul piruvat.
2. Dua molekul NAD+ telah direduksi menjadi NADH

3. Jumlah bersih sebesar dua molekul ADP telah difosforilasi menjadi ATP (empat molekul ATP yang diperoleh dikurangi dua yang dinvestasikan).
Tabel 15.1. Mengikhtisarkan reaksi glikolisis :
1. Glukosa Glukosa 6-fosfat
2. Glukosa 6–Fosfat Fruktosa 6–fosfat
3. Fruktosa 6–Fosfat Fruktosa 1,6–difosfat
4. Fruktosa 1,6–difosfat
Dihidroksiaseton fosfat Gliseraldehida 3-fosfat
5. Gliseraldehida 3–Fosfat 1,3–difosfogliserat
6. 1,3–difosfogliserat 3–Fosfogliserat
7. 3–Fosfogliserat 2-Fosfogliserat
8. 2–Fosfogliserat Fosfoenolpiruvat
9. Fosfoenolpiruvat piruvat
Contoh proses glikolisis itu sendiri terjadi pada Glikolisis pada sel ragi dan glikolisis pada sel darah merah.
A. Glikolisis pada Sel Ragi
Pada hasil percobaan yang telah dilakukan didapat bahwa pada glikolisis sel ragi didapat pada tabung ke 1 (suspensi ragi + larutan glukosa) ditambahkan pereaksi Benedict dan setelah dipanaskan ternyata proses glikolisis berjalan dengan baik dan semua glukosa terhidrolisis. Pada tabung ke 2 (suspensi ragi dipanaskan + larutan glukosa) ditambahkan pereaksi Benedict dan setelah dipanaskan ternyata proses glikolisis masih berjalan, seharusnya proses glikolisis tidak berjalan, hal ini disebabkan karena ragi yang dipanaskan sel ragi akan mati maka tidak terjadi glikolisis. Pada tabung ke 3 (suspensi ragi + larutan glukosa + laruitan arsenat (AS2O3 1 %) + pereaksi Benedict) setelah dipanaskan ternyata glikolisis tetap berjalan. Arsenat di sini seharusnya sebgai penghambat/inhibitor agar tidak terjadi glikolisis, ternyata arsenat di sini tidak menghambat glikolisis, glukosanya habis karena glikolisis tetap berjalan. Fungsi penambahan arsenat di sini sebagai inhibitor/penghambat proses glikolisis dan glukosa yang dihasilkan tidak habis (tidak semua glukosa terhidrolisis). Jika dilihat dari kadar glukosa, pada tabung ke 1 kadar glukosanya lebih sedikit (endapan yang terlihat sedikit) sebelum dipanaskan dan setelah dipanaskan endapan berwarna kuning kecoklatan, ini menandakan bahwa kadar glukosa berkurang, proses glikolisis tetap terjadi tetapi hanya sedikit glukosa yang terhidrolisis. Begitu juga hal ini pada tabung ke 2 endapan terlihat banyak (sebelum dipanaskan) terdapat endapan kuning setelah dipanaskan, glikolisis juga tetap terjadi tetapi hanya sedikit. Pada tabung ke 3. terdapat endapan kuning setelah dipanaskan, ini menandakan bahwa kadar glukoa telah berkurang, walaupun pada tabung ke 3 ini sudah ditambahkan arsenat yang dijadikan sebagai inhibitor/penghambat, tetapi arsenat tidak menghambat glikolisis, glikolisis dapat berjalan walau hanya sedikit. Pereaksi Benedict di sini digunakan untuk indikasi banyak atau tidaknya glukosa.
Reaksi Glukosa + Benedict
2 Cu+ + 2 OH- Cu2O + H2O
(endapan)
b. Glikolisis pada Sel Darah Merah
Pada tabung ke 1 dan ke 2 digunakan sebagai kontrol positif dan negatif. Bertujuan untuk membandingkan dengan tabung ke 3 dan ke 4 digunakan untuk melihat inhibitor. Pada tabung ke 1, ke 3, dan tabung ke 4 ditambahkan satu tetes darah . Masing-masing tabung ditambah larutan buffer fosfat (7 ml). Lalu ketiga tabung tersebut dtambahkan dengan glukosa 2 % sebanyak 1 ml. Pada tabung ke 4 dan ke 3 ditambah lagi dengan larutan arsenat pada tabung ke 4 dan ditambah lagi dengan larutan Hg(CH3COO)2 pada tabung ke 3. Setelah itu keempat tabung reaksi tersebut diinkubasi pada suhu 37 oC selama 30menit, kemudian dipanaskan selama 5 menit. Pada tiap tabung terdapat endapan yang berwarna berbeda-beda. Pada tabung ke 1 dan ke 2, terdapat endapan merah bata, ini menandakan semua glukosa terglikolisis. Sedangkan pada tabung ke 3 dan ke 4, tabung ke 3 endapan berwarna coklat dan tabung ke 4 berwarna kuning, ini menandakan proses glikolisis tetap berjalan, walaupun ada ditambahkan larutan penghambat (arsenat dan larutan Hg(CH3COO)2).
Dari warna endapan yang ada kita dapat membandingkan pada tabung ke 1 dan ke 2 proses glikolisis berlangsung dengan baik karena kadar glukosa berkurang, glikolisis berjalan dengan baik karena tidak ada yang menghambat. Sedangkan pada tabung ke 3 dan ke 4 yang sudah diberi larutan penghambat/inhibitor (arsenat dan larutan Hg(CH3COO)2) glikolisis tetap berjalan, karena kerja penghambat di sini hanya sedikit sekali menghambatnya, terlihat dari berkurangnya sedikit glukosa dari warna endapan yang terlihat berbeda antara tabung ke 3 dan ke 4 dengan tabung ke 1 dan ke 2
Reaksi Peragian
Reaksi Fermentasi Asam Laktat
Prosesnya :
1. Glukosa Asam piruvat (proses glikolisis)
2. Dehidrogenasi Asam Piruvat akan terbentuk Asam Laktat
Energi yang terbentuk dari glikolisis hingga terbentu asam laktat
8 ATP – 2 NADH2 = 8 – 2 (3 ATP) = 2 ATP